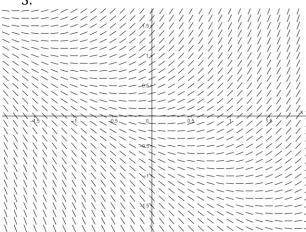

Instructions: In the box below are the numbers 0-9. Complete the following and cross off the number for each answer. If you complete all problems correctly, you will cross off each number exactly once!

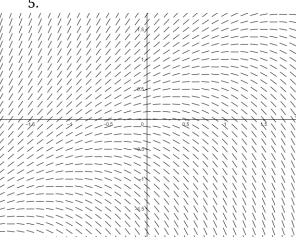
0 1 2 3 4 5 6 7 8 9

A) Consider the differential equation $\frac{dy}{dx} = \frac{3y^2}{\cos(\pi x)}$. Let y = f(x) be the particular solution to the differential equation with initial condition f(3) = -1. The equation of the line tangent to the graph of f at (3, -1) can be written as y = mx + b. Find b.

B) A slope field for a given differential equation is shown above. There is a horizontal line with equation y = c that satisfies the differential equation. Find the value of c.

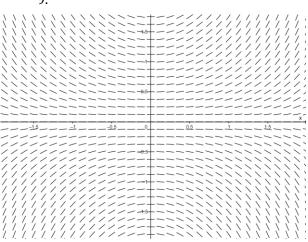
C) Consider the differential equation $\frac{dy}{dx} = \frac{2y}{x^2}$. Let y = h(x) be the particular solution to the differential equation through $\left(2, \frac{5}{e}\right)$. Find $\lim_{x \to \infty} h(x)$.


D) The differential equation $\frac{dy}{dx} = \frac{(3-x)^2}{y}$ has the particular solution y = f(x) with initial condition f(-1) = 4. Find the slope of the tangent line to the graph of f at x = -1.


E) Let y = g(x) be the particular solution to the differential equation $\frac{dy}{dx} = \frac{3\sin(\pi x)}{2y}$ with initial condition $g\left(\frac{1}{2}\right) = 3$. Then $g(x) = \sqrt{a + b\cos(\pi x)}$ where a and b are constants. Find a.

F) The non separable differential equation $\frac{dy}{dx} = 8x - 2y$ has a *linear* particular solution of the form y = mx + b. Find m + b.

G) Which of the following could be a slope field for the differential equation $\frac{dy}{dx} = x - y$?



7.

H) Let y = f(x) be the particular solution to the differential equation $\frac{dy}{dx} = \frac{1}{3}(9 - y)$ with the initial condition f(1) = 3. Use the line tangent to the graph of f at (1,3) to approximate f(2.5). I) For $0 \le t \le 3$ days, the number of weeds in a large garden is given by the function W that satisfies the differential equation $\frac{dW}{dt} = \frac{1}{12}(-318 + 24W)$. At time t = 2 days, there are 20 weeds in the garden. Find $\frac{d^2W}{dt^2}$ when W = 14.

J) Consider the differential equation $\frac{dy}{dx} = \left(1 - \frac{4}{x^3}\right)(y-1)^2$. Let y = f(x) be the particular solution to the differential equation with initial condition f(2) = -1. Find f(1).